
CDS-plotcon - a.k.a. MLRGD

(software notes)

Andrew E. Firth

Department of Biochemistry, University of Otago, PO Box 56, Dunedin, New Zealand

1

Contents

1 Introduction 3

2 Installation 3

3 Example 4

4 Required software and files 5

5 Input files 5

6 Output files 6

7 Error log file 9

8 Parameters 10

9 redo mlrgd and redo plots 11

10 Run time 11

11 Maximum number/length of sequences 11

12 Algorithms 12
12.1 Overview . 12
12.2 Notes . 12
12.3 Mutation model . 13
12.4 Substitution matrices . 14

12.4.1 Nucleotide substitution matrix . 15
12.4.2 Codon usage table . 15
12.4.3 Amino acid substitution matrix . 15

References 15

2

1 Introduction

A powerful technique for locating functional elements in genomes is to look for conserved columns in
multiple sequence alignments (Stojanovic et al. 1999; plotcon, EMBOSS package – Rice et al. 2000;
MultiPipMaker – Schwartz et al. 2003; Margulies et al. 2003; VISTA – Frazer et al. 2004). However
it is difficult to use this method to detect additional functional elements within protein-coding sequences
(CDSs), since many columns in CDSs show conservation due to constraints on the encoded protein. It is
possible to look for conserved columns at four-fold degenerate sites (some, but not all, third nucleotide
positions in codons), but this leaves out information from at least two thirds of columns and is more-
or-less impossible within overlapping genes (common in viruses). Conserved RNA secondary structures
may be found with programmes such as alidot (Hofacker et al. 2002) and RNA-DECODER (Pedersen et al.
2004), while other features may be detected through database similarity searches. However novel features
without significant RNA secondary structure can not be detected using these methods.

The software package CDS-plotcon is specifically designed to search for conserved functional elements
within CDSs. It uses an average model (§12.3) of the expected mutation patterns within CDSs (incorpo-
rating a nucleotide mutation matrix, amino acid substitution matrix, sequence divergence parameter t,
mean synonymous:nonsynonymous substitution ratio V and phylogenetic tree; it can handle up to three
overlapping CDSs in different read-frames). Using this, it calculates the expected number of mutations
across the alignment in each column and compares this with the observed number of mutations. The
results are plotted along the genome, and optionally passed through a sliding window (clipped) mean
filter (§6).

Particularly conserved regions may indicate non-coding functional elements, new coding ORFs, or
more-conserved regions within proteins (e.g. motifs). The software also produces conservation plots for
four-fold degenerate sites, that may be used to help distinguish these alternatives. CDS-plotcon could also
be used in conjunction with complementary programmes (e.g. RNA structure prediction programmes).

As well as running the core conservation-calculating programme, the master script run mlrgd also
aligns the input sequences, extracts CDS locations from GENBANK-format files or user-supplied files,
calculates a phylogenetic tree, and produces the plots. In run mlrgd, the user may alter many parameters
including parameters for fitting t and V , running mean window sizes and clipping levels, whether the
genome is circular or not and sequence range to analyse (§8).

The package is particularly useful for analysing virus genomes where (sometimes multiple) CDSs
overlapping non-coding conserved features are common and many sequenced genomes with a reasonable
range of divergences are often available. In general, a set of viral genomes may be downloaded in
GENBANK-format from the NCBI website and fed straight into the package with minimal user input
necessary.

2 Installation

The programmes are written in C++ and should run under any LINUX/UNIX-like environment (e.g.
MacOS X11), provided you have a C++ compiler. First get the file CDSplotcon.tar.gz, unpack it and
compile the various programmes (replace ‘g++’ by an appropriate alternative, e.g. c++ or gcc, if you’re
using a different C++ compiler):

> gunzip CDSplotcon.tar.gz

> tar xvf CDSplotcon.tar

> cd CDSplotcon

> g++ -o addgaps addgaps.cxx

> g++ -o minmax minmax.cxx

> g++ -o mlrgd mlrgd.cxx

> g++ -o ntadjust ntadjust.cxx

> g++ -o runclipmean runclipmean.cxx

> g++ -o runmean runmean.cxx

Then copy these programmes to your bin directory.

3

3 Example

An example set of input sequences (for Hepatitis B virus) is included in the distribution. To run the
example, do the following:

> cd EXAMPLE1

> ./run mlrgd hbv

(Note that a few of the parameters in EXAMPLE1/run mlrgd differ from those in the default run mlrgd –
e.g. the circular genome option is switched on.)

The programme produces a number of output files, which will be described in more detail below. The file
hbv.fcm.eps (Figure 1; postscript image; view with e.g. ggv hbv.fcm.eps) shows a number of statis-
tics and conservation plots (running mean) for non-coding positions, 1st, 2nd and 3rd codon positions,
four-fold degenerate neutral sites, and all nucleotide positions. There are other tracks for the estimated
p-values, the number of contributing sequences in each column (i.e. not gapped in the alignment), anno-
tated CDSs, and any other annotated features (here the annotated features are from Smith et al. 1998,
Moolla et al. 2002, Chen et al. 2005, and the NCBI reference sequence NC 003977).

There is another example (Barley Yellow Dwarf Virus), using GENBANK-format sequences, in EXAMPLE2:

> cd EXAMPLE2

> ./run mlrgd bydv

In general the command is

> ./run mlrgd prefix

Alignment: hbv; full−coding model; running mean
pairs: 15; aln length: 3245 nt; total muts: 2200; mean muts/column: 0.69; mean neutral muts/column: 1.73

co
ns

er
va

tio
n

sc
or

e

non−coding positions
21 nt running−mean

1st codon position
11 codon running−mean

2nd codon position
11 codon running−mean

3rd codon position
11 codon running−mean

4−fold degenerate
synonymous sites
11 nt/codon running−mean

all nucleotides
21 nt running−mean

More conserved

than model

(1 / p−value)
1e+00

1e+02

1e+04

1e+06
all nucleotides

21 nt running−mean

Summed
divergence of

contributing
sequence pairs 0.0

0.2
0.4
0.6
0.8
1.0

mean number
of mutations
per column

Reference
sequence CDSs

0 500 1000 1500 2000 2500 3000

Known
features

nucleotide index

Figure 1: One of the output plots for Hepatitis B Virus example.

4

4 Required software and files

run mlrgd will die if any of the following software is missing.

mlrgd

runmean

runclipmean

addgaps

minmax

ntadjust

C++ programmes in the CDS-plotcon package.

run mlrgd

mlrgd.R
Scripts in the CDS-plotcon package.
These will need to be in the running directory.

aa2codon.dat

aa.dat

codon.dat

nuc.dat

Amino acid, codon and nucleotide matrices.
These will need to be in the running directory.

code2aln
Sequence alignment programme.
Obtain from http://www.tbi.univie.ac.at/∼roman/Code2aln/.

seqret

seqretsplit

infoseq

degapseq

Part of the EMBOSS package.
Obtain from http://emboss.sourceforge.net/.

ednaml

ednapars

Phylogeny programmes in the PHYLIP package.
Repackaged as part of the EMBASSY package. Obtain from
http://emboss.sourceforge.net/.

R
Statistics and graphics package.
Obtain from http://www.r-project.org/.

5 Input files

The following files may be provided as input. Some are optional.

prefix.seqs
List of sequence files to use. The first sequence is taken as the refer-
ence sequence, refseq.fasta or refseq.gbk.

seqname.fasta

seqname.gbk
FASTA and/or GENBANK-format sequence files.

seqname.fasta.orfs

seqname.gbk.orfs

CDS annotation. Use the corresponding sequence coordinates, not
alignment coordinates; the first nt is 1 not 0. (CDS files are only
needed for the reference sequence if refpos = 1. CDS files are ex-
tracted from seqname.gbk file headers, where available, if gbkpos =

1.)

refseq.fasta.features

or refseq.gbk.features

Optional list of annotated features to include on plots. Use reference
sequence coordinates.

prefix.pairs
Optional list of sequence pairs to use. Otherwise the sequence pairs
are taken from the phylogenetic tree.

5

6 Output files

run mlrgd produces the following output.

prefix.aln code2aln alignment.

prefix.ORF.ps

prefix.info.ral
CDSs used by code2aln.

prefix.tree phylip tree file.

prefix.pairs Sequence pairs used by mlrgd.

prefix.run mlrgd Copy of the run mlrgd script.

prefix.errorlog Error log file.

prefix.nc.info

prefix.fc.info

Some alignment-wide statistics used in the plots. (Note that ‘nc’
indicates a non-coding model (annotated CDSs are ignored), while
‘fc’ indicates the full-coding model (i.e. up to triple-coding).)

prefix.nc.dat

prefix.fc.dat
Log of whole-sequence/region statistics for each pairwise comparison.

prefix.nc.log

prefix.fc.log
Log of statistics for each nt in each pairwise comparison.

prefix.nc.plot

prefix.fc.plot
Log of statistics for each nt, summed over the phylogenetic tree.

prefix.ncm.R

prefix.ncc.R

prefix.fcm.R

prefix.fcc.R

R plotting scripts.

prefix.ncm.eps

prefix.ncc.eps

prefix.fcm.eps

prefix.fcc.eps

Plots. (Note that ‘nc’ indicates a non-coding model, ‘fc’ indicates the
full-coding model, ‘m’ indicates running mean, ‘c’ indicates clipped
running mean.)

The files prefix.??.dat contain whole-sequence (or sequence-region) statistics for each pairwise sequence
1 – sequence 2 comparison in prefix.pairs. Columns are as follows:

1. Best-fitting t (more-or-less evolutionary time).

2. Mean
∑

i

[

log(P (N
seq

1

i → N
seq

2

i))
]

per nt, where N
seq

1

i and N
seq

2

i are aligned nucleotides in se-
quences 1 and 2.

3. Number of nt used in the comparison.

4. Number of nt discarded due to being gaps in one or both sequences.

5. Number of nt discarded due to being ‘zero-probability’ transitions according to the given substitu-
tion matrices aa.dat and codon.dat (e.g. stop ↔ non-stop).

6. Number of point mutations (out of the nt used, i.e. Col. 3).

7. Number of neutral or synonymous point mutations (including all non-coding nt).

8. Flag = 1 if problems with t-fitting (outside given range or didn’t converge in maximum allowed
number of iterations).

9. Number of 4-fold degenerate sites (in sequence 1) with a neutral or null mutation.

10. Number of 4-fold degenerate sites (in sequence 1) with a neutral non-null mutation.

11. Best-fitting V (scaling between nonsynonymous and synonymous substitution acceptabilities).

6

12. Flag = 1 if problems with V -fitting (outside given range or didn’t converge in maximum allowed
number of iterations).

Notes:

1. The mutation rate per nt is Col. 6 / Col. 3.

2. Col. 3 + Col. 4 + Col. 5 equals the sequence length in alignment coordinates.

The files prefix.??.log contain a log of statistics for each nt in each pairwise comparison. Columns are
as follows:

1. Sequence pair number.

2. Nucleotide number (in alignment coords).

3. log(P (N
seq

1

i → N
seq

2

i)). 9 ⇒ gap in both sequences, 8 ⇒ gap in sequence 1, 7 ⇒ gap in sequence
2, 6 ⇒ zero-probability transition, 5 ⇒ gap only in reference sequence (when refpos = 1).

4. Expected number of mutations (0 if gap in either sequence).

5. Expected number of neutral mutations (0 if gap in either sequence).

6. Observed number of mutations (0 if gap in either sequence).

7. Observed number of neutral mutations (0 if gap in either sequence).

The files prefix.??.plot contain a log of statistics for each nt, summed over the phylogenetic tree.
Running means of these data are used in the plots. Columns are as follows:

1. Nucleotide number (in alignment coords).

2. Expected number of mutations across phylogenetic tree.

3. Observed number of mutations across phylogenetic tree.

4. Number of pairs in which nt is non-coding (using CDS annotation).

5. Number of pairs in which nt is a 1st codon position (using CDS annotation).

6. Number of pairs in which nt is a 2nd codon position (using CDS annotation).

7. Number of pairs in which nt is a 3rd codon position (using CDS annotation).

8. Number of pairs in which nt is a gap (in either sequence) or a ‘zero-probability’ transition.

9. Standard deviation estimated from expected number of mutations.

10.
∑

λi, where λi is the mean observed number of mutations per nucleotide for sequence pair i and
the sum is over those sequence pairs contributing to the score at that nt position (e.g. not gapped).

11. Expected number of neutral mutations across phylogenetic tree.

12. Observed number of neutral mutations across phylogenetic tree.

13. Expected number of neutral mutations at 4-fold degenerate sites, across phylogenetic tree.

14. Observed number of neutral mutations at 4-fold degenerate sites, across phylogenetic tree.

15.
∑

λi for pairs with 4-fold degenerate neutral sites at each nt.

16. Number of pairs with 4-fold degenerate neutral sites, at each nt.

Notes:

7

1. Col. 4 + Col. 5 + Col. 6 + Col. 7 + Col. 8 = total number of sequence pairs.

2. Columns 2, 3, 10, 11, 12, 13, 14 and 15 should be multiplied by 0.5 since forward and backward
comparisons are done for each sequence pair, and multiplied by 0.5 again since each branch of
the tree is crossed with two pairwise comparisons (Figure 2). Column 9 should be multiplied by√

0.25 = 0.5.

The image files prefix.*.eps contain a variety of plots and statistics. The header lists the alignment
name and model, the number of sequence pairs, the alignment length, total number of mutations across
the alignment, mean number of mutations per column and the mean number of mutations per column
at four-fold degenerate neutral sites. Note that the initial list of sequence pairs covers each branch of
the phylogenetic tree twice and, in addition, for each pair both forward (sequence 1 → sequence 2) and
backwards (sequence 2 → sequence 1) comparisons are made. So these scores are divided by four – hence
sometimes a fractional number of mutations is listed.

The ten tracks are as follows

1. Conservation in non-coding regions.

2. Conservation in 1st codon positions.

3. Conservation in 2nd codon positions.

4. Conservation in 3rd codon positions.

5. Conservation at non-coding and 4-fold degenerate neutral sites.

6. Conservation for all nucleotides.

7. Significance p-values for track 6 – i.e. the probability that conservation of that magnitude or greater
would be observed if the null model were correct. Actually the reciprocal p-values are given on the
y-axis scale – e.g. 1000 corresponds to a p-value of 0.001. The scores apply to the running mean
scores. The standard deviations for each running mean window are calculated analytically using
∑

window

∑

pairs p(1− p), where the p are Ek(M) values from Equation 5, (§12.3). The p-values are
P (z ≥ score/stddev), calculated assuming a normal distribution (more-or-less OK, by the Central
Limit Theorem).

8.
∑

λi, where λi is the mean observed number of mutations per nucleotide for sequence pair i and
the sum is over those sequence pairs contributing to the score at each nt position. Essentially this
is the mean number of mutations per alignment column.

9. The location of CDSs annotated in refseq.fasta.orfs or refseq.gbk.orfs.

10. The location of known features annotated in refseq.fasta.features or refseq.gbk.features (if
any).

The conservation scores in tracks 1–6 are Ek(M) − Ok(M) (expected − observed number of mutations)
scores, scaled by

∑

λi, where λi is the mean observed number of mutations per nucleotide for sequence
pair i and the sum is over those sequence pairs contributing to the score at that nucleotide (e.g. not
including pairs with gaps at that point). This normalizes regions of the alignment where some sequences
are gapped to regions of the alignment where no sequences are gapped. If no pairs contribute at some
nucleotide (e.g. if only one sequence is ungapped, or if refpos = 1 and the reference sequence is gapped)
then the track returns to zero. Tracks 7 and 8 may be used to assess the significance of any observed
features.

The scores are passed through a running mean filter with (image files prefix.??c.eps) or without
(image files prefix.??m.eps) clipping. The window size and clipping thresholds are adjustable by the user
(use redo plots to redo the plots with different values; see §9). Note that the window skips any gaps,
so in track 1, for example, the scores at the end of one non-coding region will be windowed along with
the scores at the beginning of the next non-coding region.

Image files are produced both for the full-coding model (prefix.fc?.eps) specified by all the input CDS
files, and for a non-coding model (prefix.nc?.eps) where all nucleotides are assumed to be non-coding.

8

A variety of not-really-worth-saving files are moved to the directory TIDYUP. Keep these if you might
want to use the scripts redo mlrgd or redo plots.

The track for synonymous/neutral sites may look somewhat different from the other tracks – many
individual bars rather than a continuous line. This is because the synonymous/neutral sites are scattered
within CDSs and the track returns to zero at any gap greater than three nucleotides wide. Note that the
sliding window covers 2 × window2 + 1 adjacent synonymous/neutral sites rather than being a window
of size 2 × window2 + 1 in the alignment coordinates. You can obtain a traditional plot of conservation
at neutral sites in this track by setting fitwhat = 2 or 3.

Note that a given column may be four-fold degenerate and neutral for some sequence pairs but not
for others: four-fold degeneracy depends on the codon in sequence 1. Neutrality depends on the codons
in both sequences being synonymous. Hence at each nucleotide, track 5 is scaled by the sum of λi values
just for those pairs i that contribute, rather than the

∑

λi values in track 8. Tracks 1, 2, 3, 4 and 6 are
just scaled by the

∑

λi values in track 8. For tracks 1, 2, 3, 4 this only makes sense if the codon position
annotation is the same for all sequence pairs (e.g. if refpos = 1).

A combination of track 4 (3rd codon positions) in coding regions – except overlapping CDSs – and
track 1 (non-coding positions) in non-coding regions can be useful. This is less susceptible to site-specific
variation in the nonsynonymous:synonymous substitution ratios than track 6, but provides denser and
more even coverage than track 5. Within track 4, CDS-plotcon provides appropriate scaling between 1-,
2-, 3- and 4-fold degenerate positions.

7 Error log file

You should check the error log file prefix.errorlog. Typical errors include:

seqname contains non-ACGTU characters. Omitting this sequence.

Aborting: sequence 3, unknown nucleotide ’S’, at 2345.

Warning: sequence 3, ambiguous nt ’S’, at 2345.

→ You can set skip = 0 to allow standard ambiguous nucleotide codes.

Fitting number of mutations (87) outside that allowed by given t range. Sequence pair 4.

Iteration on t failed to converge in maxiter iterations. Sequence pair 5.

Fitting number of mutations (987) outside that allowed by given V range. Sequence pair 2.

Iteration on V failed to converge in maxiter iterations. Sequence pair 2.

→ You may need to change the parameters tttmin, tttmax, tVfit, maxiter, Vmin, Vmax. Alternatively
you may have a bad alignment – perhaps one of your sequences is too divergent from the others. (Note
that the Fitting number of mutations outside that allowed by given V range will always occur
for the nc model since, for the nc model, all nucleotides are assumed non-coding so the V parameter has
no effect.)

Warning: seqname.orfs has overlapping same-frame CDSs.

→ In this case, regions of the second CDS that overlap the first, in the same frame, are ignored.

Warning: gap within coding region not a multiple three nt; sequence pair 3, sequence 1,

sequence coord 1280, alignment coords 1296.

→ These error messages are quite common if you have extra CDSs in some sequences but not in others,
or if corresponding CDSs are longer in some sequences than in others. In this case there may be local
problems with the estimated expected number of mutations, as codons will be picked from the wrong
read-frame in sequence 2. Consider discarding more divergent sequences, supplying *.orfs files for all
sequences, or using the range1—range2 parameters to remove the problematic region.

More serious errors include:

Aborting: ORF 3 in seqname.orfs, endpoints outside sequence range.

→ Check the *.orfs files. Note that these should be in the corresponding sequence coordinates, not
alignment coordinates.

Warning: number of nucleotides in ORF 2 in seqname.orfs not a multiple of 3.

→ The programme will continue to work, but you should check your *.orfs files. Note that for

9

frameshifts, disjoint CDSs and circular genomes, you should use the GENBANK join(2307..3212,1..1623)
format in the *.orfs files.

8 Parameters

There are a variety of parameters that you can alter by opening the script run mlrgd in a text-editor and
editing the Options section. A brief description of these are given below (suggested defaults are give by
param = default).

1. pairs = 1: Method for generating the list of sequence pairs to use: 2 → use phylogenetic tree built
with ednapars (maximum parsimony); 1 → use phylogenetic tree built with ednaml (maximum
likelihood); 0 or other → use user-input file prefix.pairs.

2. refpos = 0: 0 → use seperate CDS files for each sequence; 1 or other → use reference sequence
CDS files for all sequences.

3. gbkpos = 0: 0 → get CDS files from seqname.fasta.orfs (or seqname.gbk.orfs) files; 1 or other
→ get CDS files from seqname.gbk files (for any seqname.fasta files, the seqname.fasta.orfs

file, if any, will be used).

4. skip = 0: 1 or other → skip sequence files containing non-ACGTUacgtu characters (exits if the
reference sequence contains non-ACGTUacgtu characters); 0 → read standard ambiguous nt codes
as N and ignore for most statistics (ambiguous nt are logged along with the gaps; codons containing
ambiguous nt are logged along with the ‘zero-probability’ transitions).

5. window1 = 5: n, where the running mean sliding window size for the 1st, 2nd and 3rd codon
positions and for the 4-fold degenerate neutral sites plots is 2n + 1 nt (or codons).

6. window2 = 10: n, where the running mean sliding window size for the all sites and for the non-
coding sites plots is 2n + 1 nt.

7. circular = 1: 0 → not a circular genome; 1 or other → circular genome.

8. clip1 = 0.00: Upper clipping threshold for clipped running mean: clip1 = 0.05 means that the
upper 5% (i.e. columns with low observed number of mutations relative to expected number of
mutations) in each window are clipped before calculating the mean.

9. clip2 = 0.30: Lower clipping threshold for clipped running mean: clip2 = 0.05 means that the
lower 5% (i.e. the columns with high observed number of mutations relative to expected number of
mutations) in each window are clipped before calculating the mean.

10. tttmin = 0.0: Lowest t value to use in t-fitting.

11. tttmax = 10.0: Highest t value to use in t-fitting.

12. tVfit = 0.2: Required fitting accuracy (total number of mutations between a sequence pair) for t
and V .

13. maxiter = 20: Maximum number of fitting iterations for t and V .

14. Vmin = 0.01: Lowest V value to use in V -fitting (≥ 0.01).

15. Vmax = 10.0: Highest V value to use in V -fitting (≤ 10).

16. Vtype = 1: 0 → find seperate V value for each sequence pair; 1 or other → find one V value for
the alignment.

17. Vfix = 0: If > 0, use this V value for all sequence pairs (defaults to 1 if ≤ 0; overridden if fitwhat
= 3).

10

18. fitwhat = 3: 0 or other → fit t using total number of mutations; 1 → fit t using number of
neutral/synonymous mutations; 2 → fit t using number of neutral/synonymous mutations at 4-fold
degenerate sites; 3 → as for 2, then adjust V to fit the total number of mutations (i.e. including
nonsynonymous mutations). Note: 1—3 are not recommended if the sequence is predominantly
double-coding since, in this case, the number of neutral sites is potentially very small.

19. wholeseq = 1: Nucleotide range to use for all model-fitting, statistics and plots: 0 → use the region
range1—range2, 1 or other → use the whole sequence.

20. range1 = 0: Start nucleotide of region to analyse (if wholeseq = 0; otherwise ignored), in reference
sequence coordinates.

21. range2 = 0: End nucleotide of region to analyse (if wholeseq = 0; otherwise ignored), in reference
sequence coordinates.

9 redo mlrgd and redo plots

You can use these two scripts to redo the mlrgd and plots parts (respectively) of run mlrgd, with different
parameters. This is a lot quicker than rerunning all of run mlrgd. Usage is

> ./redo mlrgd prefix tttmin tttmax tVfit maxiter fitwhat refpos circular wholeseq range1

range2 Vfix Vtype Vmin Vmax skip newprefix

and

> ./redo plots prefix window1 window2 circular clip1 clip2 newprefix

The new output files take the prefix newprefix.

You can experiment with the window sizes, and clipping parameters. For example, if you are look-
ing for unusually conserved columns, then you aren’t interested in highly variable columns so you may
want to set clip2 quite high (e.g. 50%, provided the window size is sufficiently large) so that such columns
don’t contaminate conserved columns in the same window. On the other hand, if the typical length of
features that you are interested in is 10 nt, then you could set the window size to 10 nt (e.g. window1 =
5).

10 Run time

The conservation programme mlrgd is very quick. On my LINUX PC with a 2.6 GHz PentiumR 4 pro-
cessor) it takes ∼20–40 s (depending on the parameter options) to run mlrgd on the Hepatitis B example
alignment. Much more time-consuming is the initial alignment (with code2aln) and the phylogenetic
tree calculation with dnaml (dnapars is much quicker and is recommended for alignments of more than
about 15 sequences). The time requirements of code2aln and dnaml are very dependent on the number
of sequences. The scripts redo mlrgd and redo plots allow one to rerun the conservation programme
and redo the plots with different parameters without having to rerun code2aln and dnaml.

11 Maximum number/length of sequences

Currently the maximum sequence length (with alignment gaps) is 50000 nt and the maximum number of
sequence pairwise comparisons is 100. You can change these limits by editing the ‘#define’ lines at the
beginning of *.cxx and recompiling these programmes.

11

sequence 1

sequence 2

sequence 3

sequence 4

sequence 5

sequence 6

Figure 2: Example phylogenetic tree. For this tree, the sequence pairs used by mlrgd would be sequence 1
– sequence 2, sequence 2 – sequence 3, sequence 3 – sequence 4, sequence 4 – sequence 5 and sequence 5
– sequence 6.

12 Algorithms

12.1 Overview

First the sequences are aligned with code2aln (Stocsits 2003). This sequence alignment programme tries
to keep gaps in groups of three in CDSs and smoothly joins coding regions onto non-coding regions.

Next an unrooted phylogenetic tree is made with ednaml (maximum likelihood) or ednapars (maxi-
mum parsimony). These programmes are part of the PHYLIP package (Felsenstein 2004) repackaged into
the EMBASSY package in EMBOSS (Rice et al. 2000). The tree is used to select a list of sequence pairs
tracing round the outside of the tree (Figure 2). Conservation scores are calculated with mlrgd for each
pair and summed over the tree. Note that this set of pairwise comparisons covers each branch of the
tree precisely twice – hence no branch is given more weight than another. In general, the set of pairs
selected in this way is not unique – since branches of the tree may be flipped into different places without
changing the phylogeny. Note that these default trees just use a simple non-coding evolutionary model.
However, if desired, the user may input their own list of pairs.

For each sequence pair S1–S2, mlrgd finds the best-fitting sequence divergence t and, optionally,
the best-fitting synonymous:nonsynonymous weighting V (see §12.3). With these t and V values mlrgd
calculates the expected number of mutations at each nucleotide in S1 (a number between 0 and 1), and
the observed number of mutations (either 0 or 1). These values are summed over all pairs to give the
conservation plots.

12.2 Notes

Knowing the correct reading-frame is very important for mlrgd’s statistical mutation model. When
estimating the probability that a given nucleotide in a CDS will mutate, mlrgd needs to know which
codon it is a member of in both sequences. In a given pairwise comparison S1–S2, either S1 (refpos =

0) or the reference sequence (refpos = 1) CDS files are used to define all the reading-frames. If refpos
= 0, every coding nucleotide in S1 is therefore assigned a codon position (1st, 2nd or 3rd) and read-
direction (forward or reverse). The nucleotides in S2 are identified purely on the basis of the nucleotides
that they align with in S1. If refpos = 1, the nucleotide identification in both S1 and S2 comes from their
alignment with the reference sequence. In order to maintain the correct reading-frame in the different
sequences, it is important that gaps in the alignment occur in groups of three within coding sequences.
Hence the use of code2aln as the alignment programme. If you have purely coding sequences you can of

12

course use e.g. CLUSTALW on the translated (amino acid) sequences and run mlrgd on its own (e.g. with
the redo mlrgd script).

The sequences used for the CDS annotation (reference sequence or S1’s, depending on refpos) mustn’t
have sequencing-error indels within CDSs, as these will throw mlrgd out of frame and cause global
problems. However indels are tolerated in the other sequences: mlrgd will get a local incorect codon
identification, but there’ll be no long-range problems. Bad alignments or local (paired) frameshifts (gaps
not in threes) will mean that nucleotides within the ‘mis-aligned’ region may have the wrong codon
position identification – leading to wrong codon identifications – but the problems should be local. It is
up to the user to check for alignment problems (see prefix.aln and prefix.errorlog files). In non-coding
regions, of course, gaps not in threes are allowed and don’t cause problems.

In general you should use refpos = 1 (just use the reference sequence CDS annotation) if you only
have CDS annotation for one or a few of your sequences, or if you want to ensure that the CDS annotation
is identical across the alignment, or if some sequences have less-than-perfect sequencing quality. However,
supplying CDS files for all sequences may help code2aln (code2aln automatically finds long ORFs but
may miss ORFs under 300 nt or ORFs without a start codon – e.g. at ribosomal frameshift sites, stop-
codon read-through sites, or circular genomes).

For each sequence pair S1–S2, run mlrgd runs the forward comparison S1 → S2 and also the backward
comparison S2 → S1 so if, for example, there is a CDS annotated in S1 but not in S2, each nucleotide
in the CDS will get equal weighting as a non-coding nucleotide and as a coding nucleotide in the final
output plots.

The software will handle circular genomes as follows. When calculating the mutation probability for
coding nucleotides at the ends of the input alignment, it will take into account codons that span the break
in the circular genome. Also the running mean plots will use windows that span the break. However, the
alignment programme will not reposition the breaks in the input sequences, so you must make sure that
the break is in the same place in all of your input sequences.

12.3 Mutation model

In this section we describe the model for non-coding, coding, and multiply-coding regions. We broadly
follow the standard approach of modelling sequence evolution as a Markov process (Goldman & Yang
1994; Hein & Stovlbaek 1995; Ewens & Grant 2001). However we do deviate a little (see below) in order to
deal with potentially double-coding or triple-coding regions, without having to resort to time-consuming
MCMC simulations to estimate probabilities (Pedersen & Jensen 2001). We use more or less the same
approach as in Firth & Brown (2005, supplementary material).

Suppose we have an aligned pair of sequences S1 and S2. For each nucleotide Nk
1 in S1 we estimate

the probability that Nk
1 mutates to each of the nucleotides U, C, A, G, as follows. First we define

b(Nk
1 → i; t, V), i = U, C, A, G, by

b(Nk
1 → i; t, V) = P(Nk

1 → i; t) (1)

for non-coding regions,

b(Nk
1 → i; t, V) = P(Nk

1 → i; t)
×A(X1 → X2) × V ns × C(X2)

(2)

for single-coding regions, and

b(Nk
1 → i; t, V) = P(Nk

1 → i; t)
×A(X1 → X2) × V ns × C(X2)
×A(X ′

1 → X ′
2) × V ns × C(X ′

2)
(3)

for double-coding regions, with the obvious extension for triple-coding regions. Here X1 and X2 are the
original and final amino acids or codons in one read-frame, and X ′

1 and X ′
2 are the original and final amino

acids or codons in the second read-frame (for double-coding regions), for the nucleotide mutation Nk
1 → i.

The mutation is taken in the context of S2, in the sense that the neighbouring nucleotides for the codons
X2 and X ′

2 are taken from S2, while those for X1 and X ′
1 are taken from S1. Also P(t) = exp(Qt); Q, C,

A are the nucleotide, codon and amino acid matrices described in §12.4; V ns is 1 if X1 and X2 (X ′
1 and

X ′
2) are synonymous codons and V ns is a scaling factor V if X1 and X2 (X ′

1 and X ′
2) are nonsynonymous

codons.

13

The probability that Nk
1 mutates to j, after time t, is then given by

P (Nk
1 → j; t, V) =

b(Nk
1 → j; t, V)

∑

i=U,C,A,G b(Nk
1 → i; t, V)

. (4)

Using this model, we can calculated the expected number of non-null mutations M occurring in S1

after a given time t by

E(M) =

length
∑

k=1

Ek(M) =

length
∑

k=1

∑

j 6=Nk
1

P (Nk
1 → j; t, V). (5)

Given the two sequences S1 and S2, we adjust t to fit the expected number of mutations E(M) to the
observed number of mutations O(M) between S1 and S2.

The parameter V may be left at the default value of 1 (usually pretty close to the best-fit value) or
fitted seperately for each pair of sequences or one value may be fitted for the whole alignment. In the
latter two cases, first t is determined by fitting the observed and expected number of mutations only
at non-coding positions and four-fold degenerate sites where the codons in S1 and S2 are synonymous.
Then V is determined by fitting the observed and expected total number of mutations.

Any transition that is assigned a zero-probability according to the input amino acid and codon matrices
(e.g. transitions between stop codons and non-stop codons in the default matrices) is ignored and written
to the log file. Any transition involving gaps or ambiguous nucleotide codes is also ignored and written
to the log file.

Note that the above methodology involves several approximations. Firstly, in Equation 3, we consider
only a single nucleotide and the single codon in each of the primary and secondary read-frames contain-
ing that nucleotide. However in double-coding regions, adjacent codons are linked by the overlapping
read-frame. Hence mutations within one codon can affect the probabilities for subsequent mutations in
neighbouring codons. Secondly, as far as codon and amino acid weightings are concerned, we consider
only the start and end points of the unknown mutation pathway connecting an aligned codon pair in
S1 and S2. It seems reasonable that these simplifications are justified provided S1 and S2 are not too
divergent (so that mutation pathways are short and inter-codon cross-talk is low in multiply-coding re-
gions). In Firth & Brown (2005) it is shown that this model provides useful results over a wide range of
circumstances.

The parameter V models the selection pressure that may vary from one gene to another. In fact the
selection pressure will be different for every codon and this is often modelled by site-dependent rates
models (Yang et al. 2000). Using a site-dependent model is pointless for our purposes, as it will be
impossible to distinguish columns that have enhanced conservation. The BLOSUM amino acid matrix
that we use represents the average amino acid substitution acceptabilities over all codons. The parameter
V allows a global adjustment for selection pressure while still allowing particularly conserved sites to be
distinguished from other sites. Such sites may be additional non-coding elements, new coding ORFs,
or more-conserved regions within proteins (e.g. motifs). The track for mutations at four-fold degenerate
neutral sites may be used to help distinguish between these alternatives, though it will provide information
for less than one in three nucleotides within CDSs. The track for 3rd codon positions may also be used
and, since it includes 2-fold degenerate sites, will provide information at more positions.

12.4 Substitution matrices

In this section we describe the default input 4 × 4 nucleotide mutation matrix Q, 64-entry codon usage
table C, and 20×20 amino acid substitution matrix A. You can edit these in the files nuc.dat, codon.dat
and aa.dat (respectively) if you wish, but generally you won’t need to. The genetic code may be altered
in the file aa2codon.dat. Further details are available from the authors or from Firth & Brown (2005,
supplementary material).

14

12.4.1 Nucleotide substitution matrix

As default, we use a κ = 3 Kimura (1980) nucleotide matrix, i.e.

Q =









−1.0 0.6 0.2 0.2
0.6 −1.0 0.2 0.2
0.2 0.2 −1.0 0.6
0.2 0.2 0.6 −1.0









, (6)

where the row and column order is U, C, A, G. This corresponds to equal equilibrium nucleotide frequen-
cies πj and a transition:transversion ratio of κ = 3.

12.4.2 Codon usage table

As default, we use a null codon usage table (CUT) – i.e. equal codon frequencies. For typical viral
genomes, due to the large number of overlapping CDSs and other constrained features, it is not clear that
a CUT generated directly from the viral genome will be representative of mutation probabilities. The
host species CUT may be more appropriate which, in the case of human viruses, is not strongly biased
and so we use a null CUT for simplicity (see also simulations in Firth & Brown 2005). In addition, using
a non-null CUT means that four-fold degenerate sites in CDSs are no longer strictly degenerate in terms
of substitution probabilities.

More generally a non-null CUT may be incorporated as follows. Suppose we have the codon GGU.
Mutations in the 3rd position are synonymous (all code for gly) and their relative frequencies are controlled
by the nucleotide mutation matrix Q. However we also wish to preserve codon bias as a sequence mutates.
Since we are always working from an initial known amino acid, we must use relative (instead of absolute)
codon frequencies but each frequency must be multiplied by the degeneracy of the corresponding amino
acid, otherwise, for example, ?UG → CUG (leu) will be a factor of six less probable than ?UG → AUG
(met) simply because there are six codons for leu but only one for met. In addition, codon usage
statistics implicitly include any nucleotide bias and, conversely, any nucleotide bias described by Q will
automatically lead to a codon bias. Hence the nucleotide equilibrium frequencies πj must be factored
out by dividing each codon usage value by πi.πj .πk where i, j, k are the ith, jth, kth nucleotides in the
codon. See Firth & Brown (2005) for scripts to produce appropriate CUTs from standard absolute or
relative frequency CUTs.

12.4.3 Amino acid substitution matrix

In our model, the probability that a nucleotide mutation occurs at the DNA level and the probability
that the mutation is accepted (i.e. is functional) at the protein level are separated into the nucleotide
and amino acid matrices. In contrast, the widely used BLOSUM (Henikoff & Henikoff 1992) and PAM
(Dayhoff et al. 1978) matrices incorporate both effects into one matrix. In the PAM matrices, the small-t
amino acid substitution frequencies are extrapolated to larger t. This is a serious short-coming since,
in reality, at small t a mutating sequence is constrained to resemble the original sequence at both the
nucleotide and amino acid levels, whereas at large t a mutating sequence is only constrained to resemble
the original at the amino acid level. On the other hand, the BLOSUM matrices are calculated, in effect,
for a series of t values: BLOSUM100, BLOSUM95, ... BLOSUM35, with the lower indices corresponding
to more divergent sequences. By choosing a low-index BLOSUM matrix (viz. BLOSUM40) as our default
amino acid distance matrix A, we minimize the effect of the nucleotide mutation constraint relative to
the amino acid acceptability constraint.

We use the scaled observed frequencies (Henikoff & Henikoff
qij

eij
values) rather than log odds scores,

and treat
qij

eij
/ qii

eii
as the probability of acceptance for the amino acid substitution Xi → Xj relative to

Xi → Xi which is unity. The V parameter (§12.3) scales the off-diagonal terms of A relative to the
diagonal terms, with the default value V = 1 giving the original BLOSUM40 matrix. Stop codons are
also included, with the acceptabilities for mutations between stops and non-stops set to zero.

References

Chen A., Kao Y. F., Brown C. M., 2005, Translational of the first upstream ORF in the hepatitis B
virus pregenomic RNA modulates translation at the core and polymerase initiation codons, Nucleic

15

Acids Res., 33, 1169–1181

Dayhoff M. O., Schwartz R. M., Orcutt B. C., 1978, A model of evolutionary change in proteins, Atlas

of Protein Sequence and Structure, 5, Suppl. 3, 345–358

Ewens W. J., Grant G. R., 2001, Statistical Methods in Bioinformatics, Springer-Verlag, New York

Felsenstein, J., 2004, PHYLIP (Phylogeny Inference Package) version 3.6, http://evolution.genetics.
washington.edu/phylip.html

Firth A. E., Brown C. M., 2005, Detecting overlapping coding sequences with pairwise alignments,
Bioinformatics, 21, 282–92

Frazer K. A., Pachter L., Poliakov A., Rubin E. M., Dubchak I., 2004, VISTA: computational tools for
comparative genomics, Nucleic Acids Res., 32, W273–279

Goldman N., Yang Z., 1994, A codon-based model of nucleotide substitution for protein-coding DNA
sequences, Mol. Biol. Evol., 11, 725–736

Hein J., Stovlbaek J., 1995, A maximum-likelihood approach to analyzing nonoverlapping and overlap-
ping reading frames, J. Mol. Evol., 40, 181–189

Henikoff S., Henikoff J. G., 1992, Amino acid substitution matrices from protein blocks, Proc. Natl.

Acad. Sci. USA, 89, 10915–10919

Hofacker I. L., Fekete M., Stadler P. F., 2002, Secondary structure prediction for aligned RNA sequences,
J. Mol. Biol., 319, 1059–66

Kimura M., 1980, A simple method for estimating evolutionary rates of base substitutions through
comparative studies of nucleotide sequences, J. Mol. Evol., 16, 111–120

Margulies E. H., Blanchette M., Haussler D., Green E. D., NISC Comparative Sequencing Program,
2003, Identification and characterization of multi-species conserved sequences, Genome Res., 13,
2507–2518

Moolla N., Kew M., Arbuthnot P., 2002, Regulatory elements of hepatitis B virus transcription, J. Viral

Hepat., 9, 323–331

Pedersen A. K., Jensen J. L., 2001, A dependent-rates model and an MCMC-based methodology for
the maximum-likelihood analysis of sequences with overlapping reading frames, Mol. Biol. Evol.,
18, 763–776

Pedersen J. S., Meyer I. M., Forsberg R., Simmonds P., Hein J., 2004, A comparative method for
finding and folding RNA secondary structures within protein-coding regions, Nucleic Acids Res.,
32, 4925–4936

Rice P., Longden I., Bleasby A., 2000, EMBOSS: the European molecular biology open software suite,
Trends Genet., 16, 276–277

Schwartz S., Elnitski L., Li M., Weirauch M., Riemer C., Smit A., Green E. D., Hardison R. C.,
Miller W., NISC Comparative Sequencing Program, 2003, MultiPipMaker and supporting tools:
Alignments and analysis of multiple genomic DNA sequences, Nucleic Acids Res., 31, 3518–3524

Smith G. J. 3rd, Donello J. E., Luck R., Steger G., Hope T. J., 1998, The hepatitis B virus post-
transcriptional regulatory element contains two conserved RNA stem-loops which are required for
function, Nucleic Acids Res., 26, 4818–4827

Stocsits R. R., Nucleic Acid Sequence Alignments of Partly Coding Regions, Dissertation, 2003

Stojanovic N., Florea L., Riemer C., Gumucio D., Slightom J., Goodman M., Miller W., Hardison R.,
1999, Comparison of five methods for finding conserved sequences in multiple alignments of gene
regulatory regions, Nucleic Acids Res., 27, 3899–3910

Yang Z., Nielsen R., Goldman N., Pedersen A.-M. K., 2000, Codon-Substitution models for heteroge-
neous selection pressure at amino acid sites, Genetics, 155, 431–449

16

